Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览0
暂无评分
摘要
Dry reforming of methane (DRM) is a promising technique for converting greenhouse gases (namely, CH4 and CO2) into syngas. However, traditional thermocatalytic processes require high temperatures and suffer from low selectivity and coke-induced instability. Here, we report high-entropy alloys loaded on SrTiO3 as highly efficient and coke-resistant catalysts for light-driven DRM without a secondary source of heating. This process involves carbon exchange between reactants (i.e., CO2 and CH4) and oxygen exchange between CO2 and the lattice oxygen of supports, during which CO and H-2 are gradually produced and released. Such a mechanism deeply suppresses the undesired side reactions such as reverse water-gas shift reaction and methane deep dissociation. Impressively, the optimized CoNiRuRhPd/SrTiO3 catalyst achieves ultrahigh activity (15.6/16.0 mol gmetal -1 h-1 for H-2/CO production), long-term stability (similar to 150 h), and remarkable selectivity (similar to 0.96). This work opens a new avenue for future energy-efficient industrial applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要