Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents

Ledicia Pereira, Ventura Castillo,Mónica Calero, Sergio González-Egido,M. Ángeles Martín-Lara,Rafael R. Solís

Journal of Environmental Management(2024)

引用 0|浏览1
暂无评分
摘要
Pyrolysis of residues enriched with carbon, such as in agroforestry or industrial activities, has been postulated as an emerging technology to promote the production of biofuels, contributing to the circular economy and minimizing waste. However, during the pyrolysis processes a solid fraction residue is generated. This work aims to study the viability of these chars to develop porous carbonaceous materials that can be used for environmental applications. Diverse chars discharged by an industrial pyrolysis factory have been activated with KOH. Concretely, the char residues came from the pyrolysis of olive stone, pine, and acacia splinters, spent residues fuel, and cellulose artificial casings. The changes in the textural, structural, and composition characteristics after the activation process were studied by N2 adsorption-desorption isotherms, scanning electron microscopy, FTIR, elemental analysis, and XPS. A great porosity was developed, SBET within 776–1186 m2 g−1 and pore volume of 0.37–0.59 cm3 g−1 with 70–90% of micropores contribution. The activated chars were used for the adsorption of CO2, leading to CO2 maximum uptakes of 90–130 mg g−1. There was a good correlation between the CO2 uptake with microporosity and oxygenated surface groups of the activated chars. Moreover, their ability to adsorption of contaminants in aqueous solution was also evaluated. Concretely, there was studied the adsorption of aqueous heavy metals, i.e., Cd, Cu, Ni, Pb, and Zn, and organic pollutants of emerging concern such as caffeine, diclofenac, and acetaminophen.
更多
查看译文
关键词
Char,Activated carbon,Adsorption,Carbon dioxide,Heavy metals,Pharmaceuticals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要