Reversible Oxidative p-Doping in 2D Tin Halide Perovskite Field-Effect Transistors

ACS ENERGY LETTERS(2024)

引用 0|浏览2
暂无评分
摘要
Tin (Sn) halide perovskites are promising materials for various electronic applications due to their favorable properties. However, facile interaction with atmospheric oxygen (O-2) often hinders the practical use of Sn-based perovskites, which is regarded as a major cause of undesired variations in their electrical and structural properties. Herein, we report the reversible p-doping in phenethylammonium tin iodide ((PEA)(2)SnI4) transistors when they are exposed sequentially to ambient and vacuum conditions. Exposure to ambient conditions induces p-doping effects that lead to a significant shift in the threshold voltage. Interestingly, we have found that the unintentionally p-doped (PEA)(2)SnI4 transistors can be fully restored by simply exposing them to vacuum, indicating a complete dedoping without any structural or operational degradation. Our first-principles calculations further support the observations by revealing that the doping by O-2 molecules occurs via occupying the interstitial sites that form acceptor levels close to the valence band maximum of (PEA)(2)SnI4.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要