Facile fabrication of a graphene-based chemical sensor with ultrasensitivity for nitrobenzene

Ali Raza,Zaka Ullah,Adnan Khalil, Rashida Batool,Sajjad Haider, Kamran Alam,Nazmina Imrose Sonil, Alvi Muhammad Rouf,Muhammad Faizan Nazar

RSC ADVANCES(2024)

引用 0|浏览4
暂无评分
摘要
Chemical sensors have a wide range of applications in a variety of industries, particularly for sensing volatile organic compounds. This work demonstrates the fabrication of a chemical sensor based on graphene deposited on Cu foils using low-pressure chemical vapor deposition, following its transfer on oxidized silicon through a wet etching method. Scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy of the transferred graphene were performed. A device was fabricated by simply connecting the strips of a Cu tape along the two opposite edges of graphene, which acted as a chemical sensor. The sensor was exposed to different analytes, namely acetone, propanol, benzyl chloride, nitrobenzene, carbon tetrachloride and acetic acid. A relative change in the resistance of the device was observed, which was attributed to the interaction of analytes with graphene as it changes charge concentrations in the graphene lattice. The fabricated sensor showed a notable sensitivity and response time for all analytes, particularly a sensitivity as high as 231.1 for nitrobenzene and a response time as short as 6.9 s for benzyl chloride. The sensor was also tested for analyte leakage from containers for domestic, laboratory and industrial applications. A graphene-based chemical sensor is fabricated which offers a notable response for nitrobenzene. The sensor shows the highest sensitivity of 231.1 for nitrobenzene and the fastest response of 6.9 s for benzyl chloride.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要