Next-Generation Time-Resolved Scanning Probe Microscopy

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Understanding the nanoscale carrier dynamics induced by light excitation is the key to unlocking futuristic devices and innovative functionalities in advanced materials. Optical pump-probe scanning tunneling microscopy (OPP-STM) has opened a window to these phenomena. However, mastering the combination of ultrafast pulsed lasers with STM requires high expertise and effort. We have shattered this barrier and developed a compact OPP-STM system accessible to all. This system precisely controls laser pulse timing electrically and enables stable laser irradiation on sample surfaces. Furthermore, by applying this technique to atomic force microscopy (AFM), we have captured time-resolved force signals with an exceptionally high signal-to-noise ratio. Originating from the dipole-dipole interactions, these signals provide insights into the carrier dynamics on sample surfaces, which are activated by photo-illumination. These technologies are promising as powerful tools for exploring a wide range of photoinduced phenomena in conductive and insulating materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要