谷歌浏览器插件
订阅小程序
在清言上使用

Solidification Behavior and Microstructure Evolution in Dissimilar Electron Beam Welds Between Commercially Pure Iron and Nickel

Metallurgical and Materials Transactions A(2024)

引用 0|浏览6
暂无评分
摘要
Electron beam welding processes have highly accurate control of both spatial and temporal heating profiles which provide unique capabilities in dissimilar metals joining. In this work, electron beam welds were made between commercially pure nickel and iron to determine the effect of fusion zone composition on solidification behavior and microstructure evolution. The weld was made with a beam deflected in a circular pattern to enable joining and promote mixing. The beam traveled at a shallow angle of approximately 1 deg to the joint interface starting in the nickel and finishing in the iron. The shallow angle created a weld with a composition gradient along its 110 mm length. The solidification behavior and final weld microstructure were characterized using both light optical microscopy and scanning electron microscopy. Electron backscatter diffraction was used to determine the phase fractions in the fusion zone. A change in solidification mode from face-centered cubic austenite to body-centered cubic ferrite was observed as a function of fusion zone composition. Weld cross-sections containing 65.5 wt pct Fe and 76.9 wt pct Fe had a two-phase fcc + bcc microstructure. Using the compositions and phase fractions, the two-phase region was estimated to be between 56.4 and 79.7 wt pct Fe. Martensite was observed in cross-sections containing between 76.9 wt pct Fe and 98.1 wt pct Fe, which was confirmed using hardness measurements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要