Accelerated intestinal wound healing via dual electrostimulation from a soft and biodegradable electronic bandage

NATURE ELECTRONICS(2024)

引用 0|浏览23
暂无评分
摘要
Intestinal wound healing is a long-standing problem, with conventional suturing-based intestinal closure surgeries typically leading to postoperative problems. Alternative strategies or devices capable of effective wound healing have thus been sought. Here we report a self-powered electronic bandage made from soft and biodegradable materials that can accelerate wound healing in the intestine. The device uses dual electrostimulation to promote wound healing: a pulsed electrostimulation that induces electrotransfection of epithelial cells, promoting the expression of healing factors (such as epithelial growth factor); and a d.c. electrostimulation that enhances secretion of healing factors of the transfected cells. The electronic bandage exhibits high transfection efficiency and cell viability for intestinal epithelial cells in vitro, which boosts epithelial growth factor expression during the intraoperative period. Its self-powered galvanic cell from a magnesium and molybdenum microelectrode pair promotes healing factor exocytosis. In vitro and in vivo studies in mice show accelerated intestinal would healing compared to conventional suture-based treatments and an electronic bandage with single electrostimulation. A biodegradable electronic bandage that applies pulsed and d.c. electrostimulation can accelerate the healing of intestinal wounds in mice via transfection of cells and stimulation-induced secretion of healing factor from those cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要