Harnessing Photo‐to‐Thermal Conversion in Sulfur‐Vulcanized Mxene for High‐Efficiency Solar‐to‐Carbon‐Fuel Synthesis

Advanced Functional Materials(2024)

引用 0|浏览2
暂无评分
摘要
AbstractHarnessing solar energy for the conversion of CO2 into value‐added chemicals and fuels represents a promising strategy for sustainable development. Photo‐to‐thermal (PTT) conversion, an often‐underestimated factor, offers a remarkable approach to enhance the photocatalytic transformation of CO2, by reducing the activation energy of catalytic reactions and accelerating reaction kinetics. In order to achieve a higher energy return on investment (EROI), in this study, a sulfur‐vulcanized, multi‐layer Ti3C2 MXene is unveiled, capable of efficient sunlight‐driven CO2 photoreduction, by capitalizing on PTT conversion across the full visible‐to‐near‐infrared (NIR) spectrum. The vulcanization strategy is pivotal here, as it not only introduces an abundance of reactive sites but also extends the NIR response (peaking at 1095 nm) of MXene. The resulting rapid PTT and synergistic photo‐thermal‐catalytic CO2 reduction constitute a significant advance in this area, where CH4 (12.03 mmol g−1 h−1) and C2H4 (3.55 mmol g−1 h−1) yields are achieved with a C2+ selectivity of 29.76% under concentrated natural sunlight. This work sets a new benchmark for EROI with an average solar‐to‐carbon‐fuel (STF) conversion efficiency greater than 0.045%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要