Triple Play of Band Gap, Interband, and Plasmonic Excitations for Enhanced Catalytic Activity in Pd/Hx MoO3 Nanoparticles in the Visible Region

Leticia S. Bezerra, Samir A. Belhout,Shiqi Wang,Jhon Quiroz,Paulo F. M. de Oliveira,Shwetha Shetty,Guilherme Rocha, Hugo L. S. Santos, Sana Frindy,Freddy E. Oropeza, Victor A. de la Pena O'Shea,Antti-Jussi Kallio,Simo Huotari,Wenyi Huo,Pedro H. C. Camargo

ACS APPLIED MATERIALS & INTERFACES(2024)

引用 0|浏览4
暂无评分
摘要
Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (H-x MoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/H-x MoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of H-x MoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and H-x MoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.
更多
查看译文
关键词
plasmonic photocatalysis,earth-abundant materials,mechanochemical synthesis,hydrogen evolution reaction,phenylacetylene hydrogenation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要