Impact of the Magnetic Horizon on the Interpretation of the Pierre Auger Observatory Spectrum and Composition Data

The Pierre Auger Collaboration,A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte,K. Almeida Cheminant, A. Almela, R. Aloisio, J. Alvarez-Muñiz,J. Ammerman Yebra, G. A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, L. Apollonio, C. Aramo, P. R. Araújo Ferreira, E. Arnone,J. C. Arteaga Velázquez, P. Assis, G. Avila, E. Avocone, A. Bakalova, F. Barbato, A. Bartz Mocellin, J. A. Bellido, C. Berat, M. E. Bertaina, G. Bhatta, M. Bianciotto, P. L. Biermann, V. Binet, K. Bismark, T. Bister, J. Biteau, J. Blazek, C. Bleve, J. Blümer,M. Boháčová, D. Boncioli,C. Bonifazi,L. Bonneau Arbeletche, N. Borodai, J. Brack, P. G. Brichetto Orchera, F. L. Briechle, A. Bueno, S. Buitink, M. Buscemi, M. Büsken, A. Bwembya, K. S. Caballero-Mora, S. Cabana-Freire, L. Caccianiga, F. Campuzano, R. Caruso,A. Castellina, F. Catalani,G. Cataldi, L. Cazon, M. Cerda, A. Cermenati, J. A. Chinellato, J. Chudoba, L. Chytka, R. W. Clay,A. C. Cobos Cerutti, R. Colalillo, M. R. Coluccia, R. Conceição, A. Condorelli, G. Consolati, M. Conte, F. Convenga, D. Correia dos Santos, P. J. Costa, C. E. Covault, M. Cristinziani,C. S. Cruz Sanchez, S. Dasso, K. Daumiller, B. R. Dawson, R. M. de Almeida,J. de Jesús,S. J. de Jong, J. R. T. de Mello Neto,I. De Mitri,J. de Oliveira,D. de Oliveira Franco,F. de Palma,V. de Souza, B. P. de Souza de Errico,E. De Vito, A. Del Popolo,O. Deligny, N. Denner, L. Deval,A. di Matteo, M. Dobre, C. Dobrigkeit, J. C. D'Olivo,L. M. Domingues Mendes, Q. Dorosti, J. C. dos Anjos,R. C. dos Anjos, J. Ebr, F. Ellwanger, M. Emam, R. Engel,I. Epicoco,M. Erdmann, A. Etchegoyen, C. Evoli, H. Falcke, G. Farrar, A. C. Fauth, F. Feldbusch, F. Fenu, A. Fernandes, B. Fick,J. M. Figueira, A. Filipčič, T. Fitoussi, B. Flaggs, T. Fodran, T. Fujii, A. Fuster, C. Galea, B. García, C. Gaudu, A. Gherghel-Lascu, U. Giaccari, J. Glombitza, F. Gobbi, F. Gollan, G. Golup,M. Gómez Berisso,P. F. Gómez Vitale, J. P. Gongora, J. M. González, N. González, D. Góra, A. Gorgi, M. Gottowik, F. Guarino, G. P. Guedes, E. Guido, L. Gülzow, S. Hahn, P. Hamal, M. R. Hampel, P. Hansen, D. Harari,V. M. Harvey, A. Haungs, T. Hebbeker, C. Hojvat, J. R. Hörandel, P. Horvath, M. Hrabovský, T. Huege, A. Insolia, P. G. Isar, V. Janardhana, P. Janecek, V. Jilek, J. A. Johnsen, J. Jurysek,K. -H. Kampert, B. Keilhauer, A. Khakurdikar,V. V. Kizakke Covilakam,H. O. Klages, M. Kleifges, F. Knapp, J. Köhler, F. Krieger,N. Kunka, B. L. Lago, N. Langner,M. A. Leigui de Oliveira, Y. Lema-Capeans, A. Letessier-Selvon, I. Lhenry-Yvon, L. Lopes, L. Lu, Q. Luce, J. P. Lundquist,A. Machado Payeras, M. Majercakova, D. Mandat, B. C. Manning, P. Mantsch, F. M. Mariani, A. G. Mariazzi, I. C. Mariş, G. Marsella, D. Martello, S. Martinelli,O. Martínez Bravo, M. A. Martins,H. -J. Mathes, J. Matthews, G. Matthiae, E. Mayotte, S. Mayotte, P. O. Mazur, G. Medina-Tanco, J. Meinert, D. Melo, A. Menshikov, C. Merx, S. Michal, M. I. Micheletti, L. Miramonti, S. Mollerach, F. Montanet, L. Morejon, K. Mulrey, R. Mussa, W. M. Namasaka, S. Negi, L. Nellen, K. Nguyen, G. Nicora, M. Niechciol, D. Nitz, D. Nosek, V. Novotny, L. Nožka, A. Nucita, L. A. Núñez, C. Oliveira, M. Palatka, J. Pallotta, S. Panja, G. Parente, T. Paulsen, J. Pawlowsky, M. Pech, J. Pękala, R. Pelayo, V. Pelgrims, L. A. S. Pereira,E. E. Pereira Martins, J. Perez Armand,C. Pérez Bertolli, L. Perrone, S. Petrera, C. Petrucci, T. Pierog, M. Pimenta, M. Platino, B. Pont, M. Pothast, M. Pourmohammad Shahvar,P. Privitera, M. Prouza, S. Querchfeld, J. Rautenberg, D. Ravignani, J. V. Reginatto Akim, M. Reininghaus, A. Reuzki, J. Ridky, F. Riehn, M. Risse, V. Rizi, W. Rodrigues de Carvalho, E. Rodriguez,J. Rodriguez Rojo, M. J. Roncoroni, S. Rossoni,M. Roth, E. Roulet,A. C. Rovero, P. Ruehl, A. Saftoiu, M. Saharan, F. Salamida, H. Salazar, G. Salina, J. D. Sanabria Gomez, F. Sánchez, E. M. Santos, E. Santos, F. Sarazin, R. Sarmento, R. Sato, P. Savina, C. M. Schäfer, V. Scherini, H. Schieler, M. Schimassek, M. Schimp, D. Schmidt, O. Scholten, H. Schoorlemmer, P. Schovánek, F. G. Schröder, J. Schulte, T. Schulz, S. J. Sciutto, M. Scornavacche, A. Sedoski, A. Segreto, S. Sehgal, S. U. Shivashankara, G. Sigl, G. Silli,O. Sima, K. Simkova, F. Simon, R. Smau, R. Šmída, P. Sommers, J. F. Soriano, R. Squartini, M. Stadelmaier, S. Stanič, J. Stasielak, P. Stassi, S. Strähnz, M. Straub, T. Suomijärvi, A. D. Supanitsky, Z. Svozilikova, Z. Szadkowski, F. Tairli, A. Tapia, C. Taricco, C. Timmermans, O. Tkachenko, P. Tobiska, C. J. Todero Peixoto, B. Tomé, Z. Torrès, A. Travaini, P. Travnicek, M. Tueros, M. Unger, R. Uzeiroska, L. Vaclavek, M. Vacula, J. F. Valdés Galicia, L. Valore, E. Varela, V. Vašíčková, A. Vásquez-Ramírez, D. Veberič, I. D. Vergara Quispe, V. Verzi, J. Vicha, J. Vink, S. Vorobiov, C. Watanabe, A. Weindl, L. Wiencke, H. Wilczyński, D. Wittkowski, B. Wundheiler, B. Yue, A. Yushkov, O. Zapparrata, E. Zas, D. Zavrtanik, M. Zavrtanik

arxiv(2024)

引用 0|浏览5
暂无评分
摘要
The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood of order B_ rms≃ (50-100) nG (20Mpc/d_ s)( 100 kpc/L_ coh)^1/2, with d_ s the typical intersource separation and L_ coh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E^-2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要