谷歌浏览器插件
订阅小程序
在清言上使用

Efficient and Bright Broadband Electroluminescence Based on Environment-Friendly Metal Halide Nanoclusters

Light, science & applications/Light Science & Applications(2024)

引用 0|浏览13
暂无评分
摘要
Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress. The copper halide-based emitters are competitive candidates for broadband emission, but their high-performance electroluminescence shows inadequate broad emission bandwidth of less than 90 nm. Here, we demonstrate efficient ultra-broadband electroluminescence from a copper halide (CuI) nanocluster single emitter prepared by a one-step solution synthesis-deposition process, through dedicated design of ligands and subtle selection of solvents. The CuI nanocluster exhibits high rigidity in the excitation state as well as dual-emissive modes of phosphorescence and temperature-activated delayed fluorescence, enabling the uniform cluster-composed film to show excellent stability and high photoluminescent efficiency. In consequence, ultra-broadband light-emitting diodes (LEDs) present nearly identical performance in an inert or air atmosphere without encapsulation and outstanding high-temperature operation performance, reaching an emission full width at half maximum (FWHM) of similar to 120 nm, a peak external quantum efficiency of 13%, a record maximum luminance of similar to 50,000 cd m(-2), and an operating half-lifetime of 137 h at 100 cd m(-2). The results highlight the potential of copper halide nanoclusters for next-generation healthy lighting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要