Soft-Prompting with Graph-of-Thought for Multi-modal Representation Learning

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
The chain-of-thought technique has been received well in multi-modal tasks. It is a step-by-step linear reasoning process that adjusts the length of the chain to improve the performance of generated prompts. However, human thought processes are predominantly non-linear, as they encompass multiple aspects simultaneously and employ dynamic adjustment and updating mechanisms. Therefore, we propose a novel Aggregation-Graph-of-Thought (AGoT) mechanism for soft-prompt tuning in multi-modal representation learning. The proposed AGoT models the human thought process not only as a chain but also models each step as a reasoning aggregation graph to cope with the overlooked multiple aspects of thinking in single-step reasoning. This turns the entire reasoning process into prompt aggregation and prompt flow operations. Experiments show that our multi-modal model enhanced with AGoT soft-prompting achieves good results in several tasks such as text-image retrieval, visual question answering, and image recognition. In addition, we demonstrate that it has good domain generalization performance due to better reasoning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要