Out-of-plane orientated self-trapped excitons enabled polarized light guiding in 2D perovskites


Cited 0|Views10
No score
Active optical waveguides combine light source and waveguides together in an individual component, which are essential for the integrated photonic chips. Although 1D luminescent materials based optical waveguides were extensively investigated, 2D waveguides allow photons to flow within a plane and serve as an ideal component for the ultracompact photonic circuits. Nevertheless, light guiding in 2D planar structures normally relies on the precise control of molecular orientation, which is complicated and low yield. Here, we report a strategy to guide polarized light in 2D microflakes by making use of the out-of-plane (OP) orientation of self-trapped excitons in as-synthesized 2D perovskite microplates. A space confined crystallization method is developed to synthesize 2D perovskite microflakes with dominated broad self-trapped excitons emission at room temperature, which are highly OP orientated with a percentage of the OP component over 85 coefficient and improved coupling efficiency of OP orientated self-trapped exciton emission to the planar waveguide mode of the as-synthesized perovskite microflakes, we have achieved a broadband polarized light guiding with a full width at half maximum over 120 nm. Our findings provide a promising platform for the development of ultracompact photonic circuits.
Translated text
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined