谷歌浏览器插件
订阅小程序
在清言上使用

Projections of Aedes and Culex mosquitoes across North and South America in response to climate change

The Journal of Climate Change and Health(2024)

引用 0|浏览6
暂无评分
摘要
Introduction Climate and land use change may cause the geographical range of mosquitoes to expand, shift, or contract, ultimately changing what communities are at risk for contracting mosquito-borne diseases. Across North and South America, mosquitoes from the Aedes and Culex genera are vectors for numerous diseases, including chikungunya, dengue, various equine encephalitis viruses, Saint Louis encephalitis virus, West Nile virus, yellow fever virus, and Zika virus. The goal of our study was to project the geographical distributions of important mosquito vectors across North and South America in response to climate change which is important information to inform public health planning. Methods We used an ecological niche model and future projections of climate and land use to project the geographical ranges of two Aedes species (Ae. aegypti, Ae. albopictus) and seven Culex species (Cx. erraticus, Cx. nigripalpus, Cx. pipiens, Cx. quinquefasciatus, Cx. restuans, Cx. salinarius, Cx. tarsalis) over North and South America in response to both a high (Shared Socioeconomic Pathway [SSP] 5, Representative Concentration Pathway [RCP] 8.5) and moderate (SSP2 RCP4.5) climate warming scenario through years 2050 and 2090. Results For SSP5 RCP8.5, six species (Ae. aegypti, Ae. albopictus, Cx. erraticus, Cx. nigripalpus, Cx. quinquefasciatus, Cx. restuans) are projected to expand in geographical range, two species (Cx. pipiens, Cx. tarsalis) are projected to shift in geographical range, and one species (Cx. salinarius) is projected to nearly remain the same. Five species (Ae. aegypti, Ae. albopictus, Cx. erraticus, Cx. nigripalpus, Cx. quinquefasciatus) show the largest increase in high habitat suitability (>0.5 on a 0-1 scale) for SSP5 RCP8.5, three species (Cx. pipiens, Cx. restuans, Cx. tarsalis) show the largest increase for SSP2 RCP4.5, and one species (Cx. salinarius) shows a relatively small decrease in response to both scenarios. Conclusions We found that all nine species responded resiliently to climate change under both the high and moderate climate warming scenario, suggesting mosquito-borne disease is likely to be a continued threat in response to climate change. The projected geographical ranges can be used to inform disease risk analyses and mitigation strategies in response to climate change.
更多
查看译文
关键词
public health,vector-borne disease,climate change,niche modeling,geographic distribution,infectious disease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要