Regional-Scale Paleoproterozoic Heating Event on Archean Acasta Gneisses in Slave Province, Canada: Insights from K–Ar and 40Ar/39Ar Chronology

Minerals(2024)

引用 0|浏览0
暂无评分
摘要
Slave Province in Canada is an Archean granite–supracrustal terrane at the northwestern corner of the Canadian Shield. It is bordered by the Thelon–Taltson orogen (2.0 to 1.9 Ga) to the southeast and the Wopmay orogen (1.9 to 1.8 Ga) to the west. Acasta gneisses, exposed in the westernmost Slave Province, and the Wopmay rocks, located close to the gneisses, were systematically collected for K–Ar and laser step-heating 40Ar/39Ar single-crystal analyses of the biotite and amphibole. The K–Ar biotite ages of the four Wopmay samples range from 1816 ± 18 Ma to 1854 ± 26 Ma. The 40Ar/39Ar biotite analyses of the three Wopmay samples yield plateau ages of 1826 ± 21 Ma, 1886 ± 13 Ma, and 1870 ± 18 Ma. These ages fall within the reported U–Pb zircon age range of the Wopmay orogen. The K–Ar biotite ages of the fifteen Acasta gneisses range from 1779 ± 25 Ma to 1877 ± 26 Ma, except for one younger sample (1711 ± 25 Ma). The 40Ar/39Ar analyses of the biotite crystals from three samples give the plateau ages of 1877 ± 8 Ma, 1935 ± 14 Ma, and 1951 ± 11 Ma. The K–Ar amphibole ages from twelve samples range from 1949 ± 19 Ma to 1685 ± 25 Ma. Two samples of them give ages older than the zircon U-Pb age of Hepburn plutons. The 40Ar/39Ar analyses of the amphibole crystals show varied age relations. The two samples give plateau ages of 1814 ± 22 Ma and 1964 ± 12 Ma. Some samples exhibit apparent old ages of ~2000 Ma in the middle temperature fractions. These old fractions result from the amphibole crystals, originally formed in the Archean, being affected by the thermal events during the Wopmay orogeny but not fully resetting. These observations suggest that the K–Ar system ages of the biotite and amphibole in the Archean Acasta gneiss were rejuvenated during the Paleoproterozoic ages. The Discussion explores the possibility that the heat source rejuvenating the K–Ar system ages may have arisen due to asthenospheric extrusion into the wedge mantle, a process likely triggered by subduction rollback.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要