SOScheduler: Toward Proactive and Adaptive Wildfire Suppression Via Multi-UAV Collaborative Scheduling
IEEE internet of things journal(2024)
Abstract
Multiunmanned aerial vehicle (UAV) systems have shown immense potential in handling complex tasks in large-scale, dynamic, and cold-start (i.e., limited prior knowledge) scenarios, such as wildfire suppression. Due to the dynamic and stochastic environmental conditions, the scheduling for sensing tasks (i.e., fire monitoring) and operation tasks (i.e., fire suppression) should be executed concurrently to enable real-time information collection and timely intervention of the environment. However, the planning inclinations of sensing and operation tasks are typically inconsistent and evolve over time, complicating the task of identifying the optimal strategy for each UAV. To solve this problem, this article proposes SOScheduler, a collaborative multi-UAV scheduling framework for integrated sensing and operation in large-scale and dynamic wildfire environments. We introduce a spatiotemporal confidence-aware assessment model to dynamically and directly pinpoint locations that can optimally enhance the understanding of environmental dynamics and operational effectiveness, as well as a priority graph-instructed scalable scheduler to coordinate multi-UAV in an efficient manner. Experiments on real multi-UAV testbeds and large-scale physical feature-based simulations show that our SOScheduler reduces the fire expansion ratio by 59% and enhances the fire coverage ratio by 190% compared to state-of-the-art (SOTA) solutions.
MoreTranslated text
Key words
Wildfires,Monitoring,Dynamic scheduling,Task analysis,Sensors,Autonomous aerial vehicles,Wireless sensor networks,multirobot systems,robot sensing systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined