谷歌浏览器插件
订阅小程序
在清言上使用

Formation of Reactive Nitrogen Species Promoted by Iron Ions Through the Photochemistry of Neonicotinoid Insecticide

crossref(2024)

引用 0|浏览8
暂无评分
摘要
Abstract. Nitrous acid (HONO) and nitrogen oxides (NOx = NO + NO2) are important atmospheric pollutants and key intermediates in the global nitrogen cycle, but their sources and formation mechanisms are still poorly understood. Here, we investigated the effect of soluble iron (Fe3+) on the photochemical behavior of a widely used neonicotinoid (NN) insecticide, nitenpyram (NPM), in the aqueous phase. The yields of HONO and NOx increased significantly when NPM solution was irradiated in the presence of iron ions (Fe3+). We propose that the enhanced HONO and NO2 emissions from the photodegradation of NPM in the presence of iron ions result from the redox cycle between Fe3+ and Fe2+ and the generated reactive oxygen species (ROS) by the electron transfer between the excited triplet state of NPM and the molecular oxygen (O2). Using the laboratory-derived parametrization based on kinetic data and gridded downward solar radiation, we estimate that the photochemistry of NPM induced by Fe3+ releases 0.50 and 0.77 Tg N year-1 of NOx and HONO to the atmosphere, respectively. This study suggests a novel source of HONO and NOx during daytime and potentially helps to narrow the gap between the field observations and model outcomes of HONO in the atmosphere. The suggested photochemistry of NPM can be an important contribution to the global nitrogen cycle affecting the atmospheric oxidizing capacity as well as the climate change.
更多
查看译文
关键词
Neonicotinoids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要