Minocycline-Loaded Cerium Oxide Nanoparticles for the Enhanced Treatment of Intracerebral Hemorrhage

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览3
暂无评分
摘要
Inflammatory responses and neuronal ferroptosis, which are associated with abnormal accumulation of reactive oxygen species (ROS), exert crucial damaging effects on the brain after intracerebral hemorrhage (ICH). In this study, minocycline (MC)-loaded cerium oxide nanoparticles (CeO2-MC) are constructed for combined ICH treatment. Ultra-small CeO2 (approximate to 5 nm) synthesized via a high-temperature approach exhibits powerful free-radical scavenging and iron-chelating abilities. In vitro experiments demonstrated that CeO2-MC effectively attenuated the ROS levels in mouse microglial cells and neurons following oxyhemoglobin stimulation. In addition, CeO2-MC exhibits iron chelation properties and stabilizes the mitochondrial membrane potential, thereby promoting anti-inflammatory responses and preventing neuronal ferroptosis. In an intracerebral hemorrhage (ICH) mouse model, CeO2-MC exhibited robust free radical scavenging capabilities and demonstrated the ability to preserve mitochondrial morphology and function, mitigate brain edema, and maintain blood-brain barrier integrity by inhibiting neuroinflammation and ferroptosis. Neurobehavioral tests demonstrated that CeO2-MC significantly ameliorated spatial learning ability and sensorimotor function after ICH. Consequently, a general strategy using CeO2 nanoparticles to augment the therapeutic efficacy of MC highlights a new perspective for the in-depth treatment of ICH.
更多
查看译文
关键词
CeO2 nanoparticles,ferroptosis,intracerebral hemorrhage,minocycline,neuroinflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要