Diurnal emission variation of ozone precursors: Impacts on ozone formation during Sep. 2019

Yifan Tang, Yuchen Wang,Xuwu Chen,Jie Liang,Shuai Li,Gaojie Chen,Zuo Chen, Binxu Tang, Jiesong Zhu,Xiaodong Li

Science of The Total Environment(2024)

引用 0|浏览1
暂无评分
摘要
With the issue of ozone (O3) pollution having increasingly gained visibility and prominence in China, the Chinese government explored various policies to mitigate O3 pollution. In some provinces and cities, diurnal regulations of O3 precursor were implemented, such as shifting O3 precursor emission processes to nighttime and offering preferential refueling at night. However, the effectiveness of these policies remains unverified, and their impact on the O3 generation process requires further elucidation. In this study, we utilized a regional climate and air quality model (WRF-Chem, v4.5) to test three scenarios aimed at exploring the impact of diurnal industry emission variation of O3 precursors on O3 formation. Significant O3 variations were observed mainly in urban areas. Shifting volatile organic compounds (VOCs) to nighttime have slight decreased daytime O3 levels while moving nitrogen oxides (NOx) to nighttime elevates O3 levels. Simultaneously moving both to nighttime showed combined effects. Process analysis indicates that the diurnal variation in O3 was mainly attributed to chemical process and vertical mixing in urban areas, while advection becomes more important in non-urban areas, contributing to the changes in O3 and O3 precursors levels through regional transportation. Further photochemical analysis reveals that the O3 photochemical production in urban areas was affected by reduced daytime O3 precursors emissions. Specifically, decreasing VOCs lowered the daytime O3 production by reducing the ROx radicals (ROx = HO + HO˙2 + RO˙2), whereas decreasing NOx promoted the daytime O3 production by weakening ROx radical loss. Our results demonstrate that diurnal regulation of O3 precursors will disrupt the ROx radical and O3 formation in local areas, resulting in a change in O3 concentration and atmospheric oxidation capacity, which should be considered in formulating new relevant policies.
更多
查看译文
关键词
Ozone,WRF-Chem,Ozone precursor,Atmospheric oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要