Plasma-Aided Inkjet Printing of Silver Nanoparticle Conductive Structures on PDMS for Wearable Applications

SoutheastCon 2024(2024)

引用 0|浏览1
暂无评分
摘要
We report an atmospheric plasma-aided inkjet printing of silver nanoparticles on Polydimethylsiloxane (PDMS) substrates. This innovative approach diverges from traditional inkjet printing techniques by enabling the deposition of conductive materials onto stretchable bases, thus facilitating the creation of highly conductive and flexible electronic structures, such as Wi-Fi antennas, for wearable devices. Our study underscores the effectiveness of utilizing a plasma jet to print silver nanoparticle ink directly onto PDMS, circumventing the need for conventional high-temperature sintering. We emphasize the critical role of a rapid post-print plasma treatment, which serves as a low-temperature alternative to high-temperature sintering, in substantially enhancing the conductivity and performance of the printed structures. This low-temperature process marks a significant step forward in developing durable, flexible electronics, offering a sustainable and efficient pathway for future advancements in wearable technology.
更多
查看译文
关键词
PDMS,plasma-aided inkjet printing,bendable and stretchable electronics,wearable electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要