Hybrid Density Functional Theory Comparison of Oxygen Release and Solvent Decomposition Kinetics on LixNiO2 Surfaces.

Kevin Leung,Minghao Zhang

The journal of physical chemistry letters(2024)

Cited 0|Views6
No score
High-nickel-content layered oxides are among the most promising electric vehicle battery cathode materials. However, their interfacial reactivity with electrolytes and tendency toward oxygen release (possibly yielding reactive 1O2) remain degradation concerns. Elucidating the most relevant (i.e., fastest) interfacial degradation mechanism will facilitate future mitigation strategies. We apply screened hybrid density functional (HSE06) calculations to compare the reaction kinetics of LixNiO2 surfaces with ethylene carbonate (EC) with those of O2 release. On both the (001) and (104) facets, EC oxidative decomposition exhibits lower activation energies than O2 release. Our calculations, coupled with previously computed liquid-phase reaction rates of 1O2 with EC, strongly question the role of "reactive 1O2" species in electrolyte oxidative degradation. The possible role of other oxygen species is discussed. To deal with the challenges of modeling LixNiO2 surface reactivity, we emphasize a "local structure" approach instead of pursuing the global energy minimum.
Translated text
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined