Addressing adsorption and catalysis of lithium polysulfide via electronic distribution of molybdenum carbide host

Journal of Colloid and Interface Science(2024)

引用 0|浏览1
暂无评分
摘要
Heterostructure engineering is considered a crucial strategy to modulate the intrinsic charge transfer behavior of materials, enhance catalytic activity, and optimize sulfur electrochemical processes. However, parsing the role of heterogeneous interface-structure–property relationships in heterostructures is still a key scientific issue to realize the efficient catalytic conversion of polysulfides. Based on this, molybdenum carbide (Mo2C) was successfully partial reduced to molybdenum metal (Mo) via a thermal reduction at high-temperature and the typical Mo-Mo2C-based Mott-Schottky heterostructures were simultaneously constructed, which realized the modulation of the electronic structure of Mo2C and optimized the conversion process of lithium polysulfides (LPS). Compared with single molybdenum carbide, the modulated molybdenum carbide acts as an electron donor with stronger Mo-S bonding strength as well as higher polysulfide adsorption energy, faster Li2S conversion kinetics, and greatly facilitates the adsorption → catalysis process of LPS. As a result, yolk-shell Mo-Mo2C heterostructure (C@Mo-Mo2C) exhibits excellent cycling performance as a sulfur host, with a discharge specific capacity of 488.41 mAh g−1 for C@Mo-Mo2C/S at 4C and present an excellent high-rate cyclic performance accompanied by capacity decay rate of 0.08 % per cycle after 400cycles at 2.0C. Heterostructure-acting Mo2C electron distribution modulation engineering may contributes to the understanding of the structure-interface-property interaction law in heterostructures and further enables the efficient modulation of the chemical behavior of sulfur.
更多
查看译文
关键词
Molybdenum carbide,Electronic distribution,Heterostructure,Mott-Schottky Interface,Sulfur cathode,Lithium-sulfur batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要