谷歌浏览器插件
订阅小程序
在清言上使用

Modelling the Track of the GD-1 Stellar Stream Inside a Host with a Fermionic Dark Matter Core-Halo Distribution

Astronomy & astrophysics(2024)

引用 0|浏览2
暂无评分
摘要
Traditional studies on stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles with different degrees of triaxiality, which preclude to gain insights into the nature and mass of the DM particles. Recently, a Maximum Entropy Principle of halo formation has been applied to provide a DM halo model which incorporates the fermionic (quantum) nature of the particles, while leading to DM profiles which depend on the fermion mass. Such profiles develop a more general dense core - diluted halo morphology able to explain the Galactic rotation curve, while the degenerate fermion core can mimic the central massive black hole (BH). We attempt to model the GD-1 stellar stream using a spherical core-halo DM distribution for the host, which, at the same time, explains the dynamics of the S-cluster stars through its degenerate fermion-core with no central BH. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model. The stream observables are 5D phase-space data from the Gaia DR2 survey. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles parameterized by the fermion mass. This work provides evidence that the fermionic profile is a reliable model for both the massive central object and the DM of the Galaxy. Remarkably, this model predicts a total MW mass of 2.3× 10^11M_⊙ which is in agreement with recent mass estimates obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the MW, we obtain a good fit in three totally different distance scales of the Galaxy: ∼ 10^-6 kpc (central, S-stars), ∼14 kpc (mid, GD-1) and ∼ 30 kpc (boundary, Gaia RC mass estimate).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要