Chrome Extension
WeChat Mini Program
Use on ChatGLM

Computational Job Market Analysis with Natural Language Processing

CoRR(2024)

Cited 0|Views4
No score
Abstract
[Abridged Abstract] Recent technological advances underscore labor market dynamics, yielding significant consequences for employment prospects and increasing job vacancy data across platforms and languages. Aggregating such data holds potential for valuable insights into labor market demands, new skills emergence, and facilitating job matching for various stakeholders. However, despite prevalent insights in the private sector, transparent language technology systems and data for this domain are lacking. This thesis investigates Natural Language Processing (NLP) technology for extracting relevant information from job descriptions, identifying challenges including scarcity of training data, lack of standardized annotation guidelines, and shortage of effective extraction methods from job ads. We frame the problem, obtaining annotated data, and introducing extraction methodologies. Our contributions include job description datasets, a de-identification dataset, and a novel active learning algorithm for efficient model training. We propose skill extraction using weak supervision, a taxonomy-aware pre-training methodology adapting multilingual language models to the job market domain, and a retrieval-augmented model leveraging multiple skill extraction datasets to enhance overall performance. Finally, we ground extracted information within a designated taxonomy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined