Epi‐Endocytic Performance Engineering through Nanomaterials Co‐Challenging: A Study of Mechanism and Implication in Radiotherapy

Huiyue Zhao, Liuting Zheng, Ruxuan Ma, Chengjin Ding, Fei Wang, Shuheng Qin,Qingqing Ding,Guangliang Jiang,Yong Hu,Da Huo

Advanced Functional Materials(2024)

引用 0|浏览0
暂无评分
摘要
AbstractWhile the influence of size on nanomaterial uptake has been extensively explored, it remains elusive how cells simultaneously respond to multiple, size‐varying particles due to the lack of a proper quantitative assay. In this study, a strategy named “metal‐doping engineering” is developed, and constructed a library of multi‐elemental alloys (MEAs) features precisely controlled size and dopant dosage for quantification with mass spectra. Next a comprehensive study of cellular uptake behaviors is conducted when treated with dual‐, triple‐, and quadra‐, size‐differing nanoparticles. Specifically, the exposure to triple‐, and quadra‐, size‐differing MEAs resulted in an unprecedented, enhanced uptake of counterpart in the middle size as 10/20 nm. Further efforts including RNA‐sequencing and photo‐affinity labeling‐assisted proteomics are devoted to uncovering the underlying mechanism, wherein the role of nonconical endocytic pathways in fast‐endophilin‐mediated endocytosis is uncovered. Given the capacity of MEAs as chaperones to facilitate the uptake of one featuring a predetermined size promoted to propose a straightforward, “bystander nanomaterials”‐assisted drug delivery strategy, whose superior dosage‐reduced radio‐sensitization performance and anti‐tumoral outcome are confirmed in vivo.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要