Effect of Fuel Injection Strategies on Performance, Regulated and Unregulated Emissions of a Gasoline Compression Ignition Engine

ASME Open Journal of Engineering(2024)

引用 0|浏览0
暂无评分
摘要
Abstract Gasoline compression ignition (GCI) mode engines are characterized by partially premixed charge combustion, leading to significant and simultaneous reductions of nitrogen oxides and particulate matter emissions. However, gasoline compression ignition engine operation suffers from a limited operating window. Air preheating and low-research octane number fuels are required to improve the engine performance. This experimental study used a blend of 70% (v/v) gasoline and 30% diesel as test fuel in a direct injection medium-duty compression ignition engine. Experiments were carried out at 5- and 10-bar brake mean effective pressure (BMEP) engine loads at 1500–2500 rpm engine speeds using a triple injection strategy (two pilots and one main injection) for all test conditions. The combustion phasing was kept constant with respect to crank angle to produce a high power output. The investigations examined engine performance and regulated and unregulated emissions. The test engine was initially operated in conventional diesel combustion mode with diesel for baseline data generation. Gasoline compression ignition mode operation demonstrated a remarkable 16% increase in the brake thermal efficiency and a substantial reduction of 65% in nitrogen oxide emissions compared to the baseline conventional diesel combustion mode. The GCI engine exhaust showed higher concentrations of regulated emissions, namely hydrocarbons and carbon monoxide, and unregulated trace emissions, such as methane, acetylene, toluene, inorganic gaseous species, and unsaturated hydrocarbons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要