Theoretical modeling of defect diffusion in wide bandgap semiconductors

Journal of Applied Physics(2024)

引用 0|浏览0
暂无评分
摘要
Since the 1940s, it has been known that diffusion in crystalline solids occurs due to lattice defects. The diffusion of defects can have a great impact on the processing and heat treatment of materials as the microstructural changes caused by diffusion can influence the material qualities and properties. It is, therefore, vital to be able to control the diffusion. This implies that we need a deep understanding of the interactions between impurities, matrix atoms, and intrinsic defects. The role of density functional theory (DFT) calculations in solid-state diffusion studies has become considerable. The main parameters to obtain in defect diffusion studies with DFT are formation energies, binding energies, and migration barriers. In particular, the utilization of the nudged elastic band and the dimer methods has improved the accuracy of these parameters. In systematic diffusion studies, the combination of experimentally obtained results and theoretical predictions can reveal information about the atomic diffusion processes. The combination of the theoretical predictions and the experimental results gives a unique opportunity to compare parameters found from the different methods and gain knowledge about atomic migration. In this Perspective paper, we present case studies on defect diffusion in wide bandgap semiconductors. The case studies cover examples from the three diffusion models: free diffusion, trap-limited diffusion, and reaction diffusion. We focus on the role of DFT in these studies combined with results obtained with the experimental techniques secondary ion mass spectrometry and deep-level transient spectroscopy combined with diffusion simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要