Product selectivity controlled by the nano-environment of Ru/ZSM-5 catalysts in nonthermal plasma catalytic CO2 hydrogenation

APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY(2024)

引用 0|浏览0
暂无评分
摘要
Nonthermal plasma (NTP) systems combined with the supported metal catalyst is a promising method to enable CO2 valorisation under mild conditions. However, insight into the relationships between the catalyst microstructure and the catalytic performance under NTP conditions is still lacking. Herein, Ru nanoparticles (NPs) on ZSM-5 zeolites with different zeolite morphologies (i.e., nanocrystals, nanosheets and conventional large crystals) and Ru NPs locations (i.e., externally supported, internally encapsulated and combination of the two) obtained by different preparation methods including encapsulation and impregnation, and combination of both approaches were investigated comparatively using NTP-catalytic CO2 hydrogenation. The results revealed that the performance of the NTP-catalysis depends on the structure of the catalysts significantly. Specifically, ZSM-5 nanocrystal and nanosheet promoted the formation of small and highly dispersed Ru NPs (with the average particle diameters of 9-15 nm), which showed the strong interaction with CO molecule and promoted the selective CO2 conversion to CH4. Regarding the location of the Ru NPs, the accessibility of Ru NPs to the plasma-induced energetic species was rather important at lower input energies. Conversely, at higher input plasma energies, the intrinsic property of the Ru NPs determines the catalytic performance, and thus the 1%Ru(in) catalyst containing internally encapsulated Ru showed high CO2 conversion of similar to 93% and CH4 selectivity of similar to 85%, respectively. Importantly, higher input energies led to the formation of C2H6 via gas phase CH4 coupling reactions.
更多
查看译文
关键词
Nonthermal plasma (NTP),Catalysis,CO (2) hydrogenation,Ru nanoparticles (NPs),ZSM-5
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要