Chrome Extension
WeChat Mini Program
Use on ChatGLM

Exploring In-Plane Shear Characteristics of Multilayer Biaxial Weft Knitted Fabrics Through a Micro-Scale Virtual Fiber Modeling

Composite structures(2024)

Cited 0|Views18
No score
Abstract
The multilayer biaxial weft knitted (MBWK) fabrics and their composites have been widely applied in fields of complex structural products due to their flexible curved deformability. The existence of stitch in MBWK complicates the deformation behavior under the in-plane shear loading. However, it has not been well explored and understood. In this study, a numerical micro-scale virtual fiber modeling was built to investigate the in-plane shear performance of MBWK by considering the micro geometric features and fiber property that are difficult to be characterized solely by experiment. The strain conditions of the stitch that determine the fabric shear behavior are discussed. The deformation behavior leads to local deformation and morphological locking of the stitch. In the early stage of the shearing, the deformability of stitch provides enough space to accommodate the rearrangement of axial yarns. In the shear locking stage, the restriction of stitch and compression within axial yarns at high shear angles restricts the axial yarns from movement in the loading direction. When the theoretical shear angle is 20°, the shear angle located in different shear regions varies. The maximum shear angle near the loading area is 19.1°, while the minimum shear angle near the fixed area is approximately 17°. The results illustrate the deformation mechanism of MBWK under in-plane shearing and provide an excellent guidance for the design of large deformation fabrics, especially for curved surfaces, thus realize the effective utilization of fabrics in engineering applications.
More
Translated text
Key words
Multilayer biaxial weft knitted (MBWK) fabric,Virtual fiber model,In -plane shear property,Deformation mechanism
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined