对抗学习对抗学习是一种很新的机器学习方法,由加拿大学者Ian Goodfellow首先提出。对抗学习实现的方法,是让两个网络相互竞争对抗,“玩一个游戏”。其中一个是生成器网络,它不断捕捉训练库里真实图片的概率分布,将输入的随机噪声转变成新的样本(也就是假数据)。另一个是判别器网络,它可以同时观察真实和假造的数据,判断这个数据到底是不是真的。通过反复对抗,生成器和判别器的能力都会不断增强,直到达成一个平衡,最后生成器可生成高质量的、以假乱真的图片。
无数据, 请查看其它