Single cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts

bioRxiv(2020)

引用 7|浏览15
暂无评分
摘要
Cancer progression is characterized by rare, transient events which are nonetheless highly consequential to disease etiology and mortality. Detailed cell phylogenies can recount the history and chronology of these critical events - including metastatic seeding. Here, we applied our Cas9-based lineage tracer to study the subclonal dynamics of metastasis in a lung cancer xenograft mouse model, revealing the underlying rates, routes, and drivers of metastasis. We report deeply resolved phylogenies for tens of thousands of metastatically disseminated cancer cells. We observe surprisingly diverse metastatic phenotypes, ranging from metastasis-incompetent to aggressive populations. These phenotypic distinctions result from pre-existing, heritable, and characteristic differences in gene expression, and we demonstrate that these differentially expressed genes can drive invasiveness. Furthermore, metastases transit via diverse, multidirectional tissue routes and seeding topologies. Our work demonstrates the power of tracing cancer progression at unprecedented resolution and scale.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要