基本信息
views: 1901
Career Trajectory
Bio
Prof. Wang has broad research interests spanning from the theory to the application aspects of machine learning (ML). At present, his core research mission is to leverage, understand and expand the role of sparsity, from classical optimization to modern neural networks, whose impacts span over many important topics such as efficient training/inference/transfer (especially, of large foundation models), robustness and trustworthiness, learning to optimize (L2O), generative AI, and graph learning. His research is gratefully supported by NSF, DARPA, ARL, ARO, IARPA, DOE, as well as dozens of industry and university grants. Prof. Wang co-founded the Conference on Parsimony and Learning (CPAL) and serves as its inaugural Program Chair. He is an elected technical committee member of IEEE MLSP and IEEE CI; and regularly serves as area chairs, invited speakers, tutorial/workshop organizers, various panelist positions and reviewers. He is an ACM Distinguished Speaker and an IEEE senior member.
Prof. Wang has received many research awards, including an NSF CAREER Award, an ARO Young Investigator Award, an IEEE AI's 10 To Watch Award, an INNS Aharon Katzir Young Investigator Award, a Google Research Scholar award, an IBM Faculty Research Award, a J. P. Morgan Faculty Research Award, an Amazon Research Award, an Adobe Data Science Research Award, a Meta Reality Labs Research Award, and two Google TensorFlow Model Garden Awards. His team has won the Best Paper Award from the inaugural Learning on Graphs (LoG) Conference 2022; and has also won five research competition prizes from CVPR/ICCV/ECCV since 2018. He feels most proud of being surrounded by some of the world's most brilliant students: his Ph.D. students include winners of seven prestigious fellowships (NSF GRFP, IBM, Apple, Adobe, Amazon, Qualcomm, and Snap), among many other honors.
Prof. Wang has received many research awards, including an NSF CAREER Award, an ARO Young Investigator Award, an IEEE AI's 10 To Watch Award, an INNS Aharon Katzir Young Investigator Award, a Google Research Scholar award, an IBM Faculty Research Award, a J. P. Morgan Faculty Research Award, an Amazon Research Award, an Adobe Data Science Research Award, a Meta Reality Labs Research Award, and two Google TensorFlow Model Garden Awards. His team has won the Best Paper Award from the inaugural Learning on Graphs (LoG) Conference 2022; and has also won five research competition prizes from CVPR/ICCV/ECCV since 2018. He feels most proud of being surrounded by some of the world's most brilliant students: his Ph.D. students include winners of seven prestigious fellowships (NSF GRFP, IBM, Apple, Adobe, Amazon, Qualcomm, and Snap), among many other honors.
Research Interests
Papers共 445 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
IEEE transactions on pattern analysis and machine intelligence (2024)
IEEE International Conference on Acoustics, Speech, and Signal Processingpp.6585-6589, (2024)
Computer Vision and Pattern Recognitionpp.8609-8618, (2024)
CoRR (2024)
Cited0Views0EIBibtex
0
0
Computer Vision and Pattern Recognitionpp.2872-2882, (2024)
arXiv (Cornell University) (2024)
Load More
Author Statistics
#Papers: 432
#Citation: 23923
H-Index: 66
G-Index: 151
Sociability: 7
Diversity: 2
Activity: 631
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn