Phase-change random access memory: a scalable technology

IBM Journal of Research and Development(2008)

引用 735|浏览3
暂无评分
摘要
Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm × 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.
更多
查看译文
关键词
future technology node,promising technology,phase-change ram,excellent scaling potential,scaling property,scalable technology,device integration,phase-change material cross-section,materials property,phase-change material,scaling behavior,phase-change random access memory,phase contrast,phase transitions,material properties,crosstalk,reliability,phase change,feasibility,nanotechnology,phase transition,particle size,properties of materials,cross section,non volatile memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要