Programmable and Scalable Architecture for Graphics Processing Units

EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, PROCEEDINGS(2019)

引用 2|浏览4
暂无评分
摘要
Graphics processing is an application area with high level of parallelism at the data level and at the task level. Therefore, graphics processing units (GPU) are often implemented as multiprocessing systems with high performance floating point processing and application specific hardware stages for maximizing the graphics throughput. In this paper we evaluate the suitability of Transport Triggered Architectures (TTA) as a basis for implementing GPUs. TTA improves scalability over the traditional VLIW-style architectures making it interesting for computationally intensive applications. We show that TTA provides high floating point processing performance while allowing more programming freedom than vector processors. Finally, one of the main features of the presented TTA-based GPU design is its fully programmable architecture making it suitable target for general purpose computing on GPU APIs which have become popular in recent years.
更多
查看译文
关键词
vliw,vector processor,transport triggered architecture,floating point,gpgpu
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要