DACTAL

Bioinformatics(2012)

引用 33|浏览0
暂无评分
摘要
Motivation: While phylogenetic analyses of datasets containing 1000–5000 sequences are challenging for existing methods, the estimation of substantially larger phylogenies poses a problem of much greater complexity and scale. Methods: We present DACTAL, a method for phylogeny estimation that produces trees from unaligned sequence datasets without ever needing to estimate an alignment on the entire dataset. DACTAL combines iteration with a novel divide-and-conquer approach, so that each iteration begins with a tree produced in the prior iteration, decomposes the taxon set into overlapping subsets, estimates trees on each subset, and then combines the smaller trees into a tree on the full taxon set using a new supertree method. We prove that DACTAL is guaranteed to produce the true tree under certain conditions. We compare DACTAL to SATé and maximum likelihood trees on estimated alignments using simulated and real datasets with 1000–27 643 taxa. Results: Our studies show that on average DACTAL yields more accurate trees than the two-phase methods we studied on very large datasets that are difficult to align, and has approximately the same accuracy on the easier datasets. The comparison to SATé shows that both have the same accuracy, but that DACTAL achieves this accuracy in a fraction of the time. Furthermore, DACTAL can analyze larger datasets than SATé, including a dataset with almost 28 000 sequences. Availability: DACTAL source code and results of dataset analyses are available at www.cs.utexas.edu/users/phylo/software/dactal. Contact: tandy@cs.utexas.edu
更多
查看译文
关键词
entire dataset,unaligned sequence datasets,dataset analysis,DACTAL source code,easier datasets,larger datasets,large datasets,real datasets,accurate tree,average DACTAL yield
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要