System software for persistent memory

EUROSYS(2014)

引用 824|浏览5
暂无评分
摘要
ABSTRACTEmerging byte-addressable, non-volatile memory technologies offer performance within an order of magnitude of DRAM, prompting their inclusion in the processor memory subsystem. However, such load/store accessible Persistent Memory (PM) has implications on system design, both hardware and software. In this paper, we explore system software support to enable low-overhead PM access by new and legacy applications. To this end, we implement PMFS, a light-weight POSIX file system that exploits PM's byte-addressability to avoid overheads of block-oriented storage and enable direct PM access by applications (with memory-mapped I/O). PMFS exploits the processor's paging and memory ordering features for optimizations such as fine-grained logging (for consistency) and transparent large page support (for faster memory-mapped I/O). To provide strong consistency guarantees, PMFS requires only a simple hardware primitive that provides software enforceable guarantees of durability and ordering of stores to PM. Finally, PMFS uses the processor's existing features to protect PM from stray writes, thereby improving reliability. Using a hardware emulator, we evaluate PMFS's performance with several workloads over a range of PM performance characteristics. PMFS shows significant (up to an order of magnitude) gains over traditional file systems (such as ext4) on a RAMDISK-like PM block device, demonstrating the benefits of optimizing system software for PM.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要