Multiscale structural anisotropy steers plant organ actuation

CURRENT BIOLOGY(2023)

引用 24|浏览7
暂无评分
摘要
Leaf movement in vascular plants is executed by joint-like structures called pulvini. Many structural features of pulvini have been described at subcellular, cellular, and tissue scales of organization; however, how the characteristic hierarchical architecture of plant tissue influences pulvinus-mediated actuation remains poorly understood. To investigate the influence of multiscale structure on turgor-driven pulvinus movements, we visualized Mimosa pudica pulvinus morphology and anatomy at multiple hierarchical scales of organization and used osmotic perturbations to experimentally swell pulvini in incremental states of dissection. We observed directional cellulose microfibril reinforcement, oblong, spindle-shaped primary pit fields, and longitudinally slightly compressed cell geometries in the parenchyma of M. pudica. Consistent with these observations, isolated parenchyma tissues displayed highly anisotropic swelling behaviors indicating a high degree of mechanical anisotropy. Swelling behaviors at higher scales of pulvinus organization were also influenced by the presence of the pulvinus epidermis, which displayed oblong epidermal cells oriented transverse to the pulvinus long axis. Our findings indicate that structural specializations spanning multiple hierarchical scales of organization guide hydraulic deformation of pulvini, suggesting that multiscale mechanics are crucial to the translation of cell-level turgor variations into organ-scale pulvinus motion in vivo.
更多
查看译文
关键词
cell wall,cellulose,plant motion,pulvinus,seismonasty,thigmonasty,nastic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要