Charge-Transfer At Aluminum C-60 Interfaces In Thin-Film Multilayer Structures

PHYSICAL REVIEW B(1994)

引用 75|浏览2
暂无评分
摘要
Thin-film multilayer structures with up to 20 repeat layers have been grown in a high-vacuum chamber by sequential deposition of aluminum (Al) and fullerene (${\mathrm{C}}_{60}$) onto room-temperature substrates. The periodicity of the layers is confirmed by x-ray-diffraction and in situ resistance measurements. The presence of underlying layers of ${\mathrm{C}}_{60}$ reduces the critical thickness at which Al becomes conducting from \ensuremath{\sim}35 to \ensuremath{\sim}20 \AA{}. In addition, there is a sudden increase in resistance that occurs when each Al layer is covered by a monolayer of ${\mathrm{C}}_{60}$. These observations, together with the measurement of a downward shift in frequency of a considerably broadened Raman-active ${\mathit{A}}_{\mathit{g}}$(2) pentagonal-pinch mode, imply that up to six electrons per ${\mathrm{C}}_{60}$ are transferred from the Al to the ${\mathrm{C}}_{60}$ layer. This demonstration of charge transfer across planar metal-${\mathrm{C}}_{60}$ interfaces suggests that multilayers may be a useful vehicle for forming fullerene interface compounds in two-dimensional structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要