Kernel Sparse Subspace Clustering on Symmetric Positive Definite Manifolds

Ming Yin,Yi Guo, Junbin Gao, Zhaoshui He, Shengli Xie

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2016)

引用 125|浏览90
暂无评分
摘要
Sparse subspace clustering (SSC), as one of the most successful subspace clustering methods, has achieved notable clustering accuracy in computer vision tasks. However, SSC applies only to vector data in Euclidean space. As such, there is still no satisfactory approach to solve subspace clustering by ${\it self-expressive}$ principle for symmetric positive definite (SPD) matrices which is very useful in computer vision. In this paper, by embedding the SPD matrices into a Reproducing Kernel Hilbert Space (RKHS), a kernel subspace clustering method is constructed on the SPD manifold through an appropriate Log-Euclidean kernel, termed as kernel sparse subspace clustering on the SPD Riemannian manifold (KSSCR). By exploiting the intrinsic Riemannian geometry within data, KSSCR can effectively characterize the geodesic distance between SPD matrices to uncover the underlying subspace structure. Experimental results on two famous database demonstrate that the proposed method achieves better clustering results than the state-of-the-art approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络