High-throughput and simultaneous analysis of eight central-acting muscle relaxants in human plasma by ultra-performance liquid chromatography–tandem mass spectrometry in the positive and negative ionization modes

Analytical and Bioanalytical Chemistry(2011)

引用 5|浏览15
暂无评分
摘要
In this report, a high-throughput and sensitive method for analysis of eight central-acting muscle relaxants in human plasma by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) in the positive and negative ionization modes using tolbutamide as internal standard is presented. After pretreatment of a plasma sample by solid-phase extraction with an Oasis HLB cartridge, muscle relaxants were analyzed by UPLC with Acquity UPLC BEH C 18 column and Acquity TQD tandem quadrupole mass spectrometer equipped with an electrospray ionization interface. The calibration curves for muscle relaxants spiked into human plasma equally showed good linearities in the nanogram per milliliter order range. The detection limits (signal-to-noise ratio = 3) was as low as 0.1–2 ng/mL. The method gave satisfactory recovery rates, accuracy, and precision for quality control samples spiked with muscle relaxants. To further validate the present method, 250 mg of chlorphenesin carbamate was orally administered to a healthy male volunteer, and the concentrations of chlorphenesin carbamate in plasma were measured 0.5, 1, 2, 4, 6, and 8 h after dosing; their concentrations in human plasma were between 0.62 and 2.44 μg/mL. To our knowledge, this is the first report describing simultaneous analysis of over more than two central-acting muscle relaxants by liquid chromatography–tandem mass spectrometry. This has been realized by the capability of our instrument for simultaneous multiple reaction monitoring of the target compounds in both positive and negative ionization modes. Therefore, the present method seems very useful in forensic and clinical toxicology and pharmacokinetic studies.
更多
查看译文
关键词
UPLC,LC-MS/MS,High-throughput,Central-acting muscle relaxant,Dantrolene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要