Multi-wall carbon nanotube-embedded lithium cobalt phosphate composites with reduced resistance for high-voltage lithium-ion batteries

Electronic Materials Letters(2016)

引用 14|浏览40
暂无评分
摘要
Lithium cobalt phosphate (LCP) is a high-voltage cathode material used in highenergy- density lithium-ion batteries. With a novel composite synthesis method, multi-wall carbon nanotube (MWCNT)-embedded LCP nanocomposites (LCPCNT composites) are synthesized to enhance the electrical conductance of LCP particles, reducing charge-transfer resistance. The LCP-CNT composites with enhanced electrical conductance approximately doubled cell capacity compared to a cell with a bare LCP cathode. The crystal structure of LCP-CNT composite particles is characterized by X-ray diffraction; the microstructures of the embedded MWCNTs inside LCP particles are confirmed by transmission and scanning electron microscopy with focused ion beam procedures. Electrochemical impedance spectroscopy shows the charge-transfer resistance of the cell with the LCP-CNT composite (1.0 wt. % CNT) cathode decreases to ~80 Ω, much smaller than the ~150 Ω charge-transfer resistance of the bare-LCP cathode cell. Based on battery test and impedance analysis, the main factors affecting the capacity increment are the reduced charge transfer resistance and the uniform distribution of MWCNTs, which is formed during the gelation step of the LCP synthesis procedure.
更多
查看译文
关键词
lithium cobalt phosphate,carbon nanotube,embedded structure,nano-composite,charge transfer resistance,lithium-ion battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要