Near-infrared monitoring of tissue oxygenation during application of lower body pressure at rest and during dynamical exercise in humans

T Nishiyasu, Tan,Kondo, Nishiyasu,Ikegami

Acta Physiologica Scandinavica(1999)

引用 28|浏览3
暂无评分
摘要
During the application of a wide range of graded lower body pressures (LBP) (-50 to 50 mmHg), we examined how (1) the tissue oxygenation in the lower and upper parts of the body changes at rest, and (2) how tissue oxygenation changes in the lower extremities during dynamical leg exercise. We used near-infrared spectroscopy (NIRS) to measure the changes induced by LBP in total Hb content and Hb oxygenation in seven subjects. At rest total Hb increased and Hb oxygenation decreased in the thigh muscles during -25 and -50 mmHg LBP, while both decreased during +25 and +50 mmHg LBP. However, in the forearm muscles during graded LBP, the pattern of change in total Hb was the reverse of that in the thigh. Measurements from the forehead showed changes only during +50 mmHg LBP. These results demonstrated that the pattern of change in total Hb and Hb oxygenation differed between upper and lower parts with graded LBP at rest. During dynamical leg exercise, total Hb and Hb oxygenation in the thigh muscles decreased during stepwise increases in LBP above -25 mmHg, Hb oxygenation decreasing markedly during +50 mmHg LBP. These results suggest that during dynamical exercise ii) LBP at +25 mmHg or more causes a graded decline in blood volume and/or flow in the thigh muscles. and (ii) especially at +50 mmHg LBP, the O-2 content may decrease markedly in active muscles. Our results suggest that NIRS can be used to monitor in a non-invasive and continuous fashion the changes in oxygenation occurring in human skeletal muscles and head during the graded changes in blood flow and/or volume caused by changes in external pressure and secondary reflexes both at rest and during dynamical exercise.
更多
查看译文
关键词
blood pressure,exercise,lower body pressure,near-infrared spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要