The suppressor of cytokine signaling-3 is upregulated in impaired skin repair: implications for keratinocyte proliferation.

Journal of Investigative Dermatology(2006)

引用 40|浏览3
暂无评分
摘要
In this study, we determined regulation and function of the suppressor of cytokine signaling (SOCS)-3 in acute and impaired murine skin repair. Upon skin injury, SOCS-3 was induced and expressed during the inflammatory phase of repair. SOCS-3 protein expression was localized in a subset of non-proliferating keratinocytes within the developing wound margin epithelia. Growth factors (EGF, transforming growth factor-alpha), nitric oxide (NO), and pro-inflammatory cytokines were inducers of SOCS-3 mRNA and protein expression in cultured human (HaCaT) and primary murine keratinocytes. Stable overexpression of SOCS-3 in HaCaT keratinocytes interfered with cytokine-induced signal transducers and activators of transcription-3 phosphorylation and inhibited serum-stimulated proliferation of the cells. Moreover, overexpression of SOCS-3 led to final differentiation of keratinocytes, which was comparable to the Ca(2+)-induced differentiation process in the cells. Finally, we determined SOCS-3 expression in two models of impaired skin repair: NO-deficient and diabetic wound healing. In line with observations from normal repair and SOCS-3 overexpression experiments, reduced keratinocyte proliferation within atrophied neo-epithelia in both models of impaired healing was associated with a marked increase in SOCS-3-expressing wound keratinocytes. In summary, this study suggests a potential novel function of SOCS-3 in regulating keratinocyte proliferation and differentiation in vitro and during skin repair in vivo.
更多
查看译文
关键词
cutaneous biology, skin disease, psoriasis, dermatitis, keratinocyte, melanocyte, skin cancer, dendritic cells, epidermis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要