Ammonia chemistry in a flameless jet

Combustion and Flame(2009)

引用 35|浏览12
暂无评分
摘要
In this paper, the nitrogen chemistry in an ammonia (NH3) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH4) containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NOx) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NOx emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane–methyl radical (CH3) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H2) oxidation.
更多
查看译文
关键词
Flameless combustion,Fuel-NOx,Ammonia conversion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要