Synergistic premalignant effects of chronic ethanol exposure and insulin receptor substrate-1 overexpression in liver.

HEPATOLOGY RESEARCH(2008)

引用 7|浏览7
暂无评分
摘要
Aim: Insulin receptor substrate, type 1 (IRS-1) transmits growth and survival signals, and is overexpressed in more than 90% of hepatocellular carcinomas (HCCs). However, experimental overexpression of IRS-1 in the liver was found not to be sufficient to cause HCC. Since chronic alcohol abuse is a risk factor for HCC, we evaluated potential interactions between IRS-1 overexpression and chronic ethanol exposure by assessing premalignant alterations in gene expression. Methods: Wild-type (wt) or IRS-1 transgenic (Tg) mice, constitutively overexpressing the human (h) transgene in the liver, were pair-fed isocaloric liquid diets containing 0% or 24% ethanol for 8 weeks. The livers were used for histopathologic study and gene expression analysis, focusing on insulin, insulin-like growth factor (IGF) and wingless (WNT)-Frizzled (FZD) pathways, given their known roles in HCC. Results: In wt mice, chronic ethanol exposure caused hepatocellular microsteatosis with focal chronic inflammation, reduced expression of proliferating cell nuclear antigen (PCNA) and increased expression of IGF-I and IGF-I receptor. In hIRS-1 Tg mice, chronic ethanol exposure caused hepatic micro- and macrosteatosis, focal chronic inflammation, apoptosis and disordered lobular architecture. These effects of ethanol in hIRS-1 Tg mice were associated with significantly increased expression of IGF-II, insulin, IRS-4, aspartyl-asparaginyl beta hydroxylase (AAH), WNT-1 and FZD 7, as occurs in HCC. Conclusion: In otherwise normal liver, chronic ethanol exposure mainly causes liver injury and inflammation with impaired DNA synthesis. In contrast, in the context of hIRS-1 overexpression, chronic ethanol exposure may serve as a cofactor in the pathogenesis of HCC by promoting expression of growth factors, receptors and signaling molecules known to be associated with hepatocellular transformation.
更多
查看译文
关键词
ethanol,frizzled,hepatocellular carcinoma,insulin receptor substrate,transgenic mice,WNT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要