Parallel Diagonalization Performance on High-Performance Computers

Springer Series in Optimization and Its Applications(2009)

引用 4|浏览7
暂无评分
摘要
Eigenvalue and eigenvector computations arise in a wide range of scientific and engineering applications. For example, in quantum chemistry and atomic physics, the computation of eigenvalues is often required to obtain electronic energy states. For large-scale complex systems in such areas, the eigensolver calculation usually represents a huge computational challenge. It is therefore imperative that suitable, highly efficient eigensolver methods are used in order to facilitate the solution of the most demanding scientific problems. This presentation will analyze the performance of parallel eigensolvers from numerical libraries such as ScaLAPACK on the latest parallel architectures using data sets derived from large-scale scientific applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要