Instability of torsion during smooth asymmetric vergence

VISION RESEARCH(1999)

引用 4|浏览3
暂无评分
摘要
Several categories of torsional eye movements obey Listing's law; however, systematic deviations from this law occur during vergence. Two kinematic models attempt to incorporate these deviations, both of which are supported by experimental evidence; however, they lead to different torsion predictions. These discrepancies have been explained in terms of experimental procedures, but it now seems likely from several recent studies that individual differences in torsion patterns may also be important. This study therefore examines the variation of torsion during a smooth asymmetric vergence task in which a fixation target was moved along the line-of-sight of the right eye at 15 degrees elevation; each of five subjects observed five trials of both inward and outward target motion, repeated in two sessions several weeks apart. There were no significant group differences in left or right eye torsion between trials or sessions, suggesting that monocular torsion patterns were relatively stable over time. When examined more closely, however, the torsion patterns shown by some individuals did vary for inward versus outward target motion. Hence, monocular torsion was idiosyncratic and depended on the direction in which fixation was changing (convergence or divergence). In a binocular analysis, cycloversion varied dramatically between subjects and depended on the direction of target motion; however, this was not the case for cyclovergence. In summary, cyclovergence is relatively stable and depends on where the eyes are looking, whereas cycloversion (and hence monocular torsion) is relatively unstable and depends on how they came to be in that particular horizontal and vertical orientation. These findings help to explain the controversy surrounding the torsional behaviour of the human eye during vergence. (C) 1998 Elsevier Science Ltd. All rights reserved.
更多
查看译文
关键词
cyclotorsion (torsion),cyclovergence,cycloversion,eye movements,Listing's law,vergence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要