Transport of binary water–ethanol mixtures through a multilayer hydrophobic zeolite membrane

Journal of Membrane Science(2008)

引用 58|浏览3
暂无评分
摘要
Transport of water–ethanol mixtures through a hydrophobic tubular ZSM-5 (Si/Al=300) zeolite membrane during pervaporation was studied experimentally and theoretically. The zeolite membrane was deposited on a support made of pure titania coated with three intermediate ceramic titania layers. The influence of feed concentration, feed temperature and permeate pressure on permeate fluxes and permeate concentrations was investigated in a wide range. Dusty gas model parameters of the support and all ceramic intermediate layers were calculated on the basis of gas permeation data. Mass transfer resistances and pressure drops in the different membrane layers during pervaporation were calculated for several process conditions. In particular the influence of the undesired but unavoidable pressure drop in the support and the intermediate layers on the effective driving force for pervaporation was evaluated and found to be relevant for predicting the overall process performance. The membrane prepared was found to be suitable for the recovery of highly concentrated ethanol from feed mixtures of relatively low ethanol concentrations at relatively low feed temperatures.
更多
查看译文
关键词
Pervaporation,Zeolite membrane,Mass transport,Dusty gas model,Ethanol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要