A Two-Dimensional Alfvén-Wave-Driven Solar Wind Model

Solar Physics(2001)

引用 41|浏览7
暂无评分
摘要
This paper presents a two-dimensional, Alfvén-wave-driven solar wind model, in which the wave energy is assumed to cascade from the low-frequency Alfvén waves to high-frequency ion cyclotron waves and to be transferred to the solar wind protons by cyclotron resonance at the Kolmogorov rate. A typical structure in the meridional plane consisting of a coronal streamer near the Sun, a fast wind in high latitudes, and a slow wind across the heliospheric current sheet, is found. The fast wind obtained in the polar region is essentially similar to that derived by previous one-dimensional flow-tube models, and its density profile in the vicinity of the Sun roughly matches relevant observations. The proton conditions at 1 AU are also consistent with observations for both the fast and slow winds. The Alfvén waves appear in the fast- and slow-wind regions simultaneously and have comparable amplitudes, which agrees with Helios observations. The acceleration and heating of the solar wind by the Alfvén waves are found to occur mainly in the near-Sun region. It is demonstrated in terms of one-dimensional calculations that the distinct properties of the fast and slow winds are mainly attributed to different geometries of the flow tubes associated with the two sorts of winds. In addition, the 2-D and 1-D simulations give essentially the same results for both the fast and the slow winds.
更多
查看译文
关键词
Solar Wind,Current Sheet,Cyclotron Resonance,Helio,Proton Condition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要