Functional dissection of XDppa2/4 structural domains in Xenopus development.

Mechanisms of Development(2009)

引用 13|浏览14
暂无评分
摘要
The maintenance of pluripotency in mammalian embryonic stem cells depends upon the expression of regulatory genes like Oct3/4 and Sox2. While homologues of these genes are also characterized in non-mammalian vertebrates, like birds, amphibians and fish, existence and function of developmental pluripotency associated genes (Dppa) in lower vertebrates have not yet been reported. Here we describe a Dppa2/4-like gene, XDppa2/4, in Xenopus. The protein contains a SAP domain and a conserved C-terminal region. Overexpression of XDppa2/4, murine Dppa2 or Dppa4 produces similar phenotypes (defects in blastopore closure), while injection of XDppa2/4 morpholino generates a loss of blastopore closure and neural fold formation. Embryos die up to tailbud stage. mDppa2 (but not mDppa4) rescues blastopore closure and neurulation defects caused by XDppaMO, but does not prevent subsequent death of embryos. Although XDppa2/4 exhibits a Dppa-like expression pattern and is indispensable for embryogenesis, analyses of various marker genes make its role as a pluripotency factor rather unlikely. Both the gain and loss of function effects until the end of neurulation are caused by the conserved C-terminal region but not by the SAP domain. The SAP domain is required for association of XDppa2/4 to chromatin and for embryonic survival at later stages of development suggesting epigenetic programming events.
更多
查看译文
关键词
Xenopus laevis,Developmental pluripotency associated (Dppa) genes,SAP domain,Germ layer formation,Gain and loss of function,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要